[Radar Hot][6]

Aljabar
Aritmatika
Autocad
Bimbel Jakarta Timur
Bimbingan Belajar
Biologi
Corel Draw
CPNS
Fisika
Geometri
Ilmu Pengetahuan
Info
Inspirasi
IPA
Islami
Kalkulus
Kimia
Kombinatorika
Manajemen
Matematika
Metode
Microsoft
MYOB
Operasi Hitung
OSN
PAT PAS UAS
Pemrograman
Pengukuran
Photoshop
Radarhot com
SEO
Soal
Software
Statistika
Teknisi
Trigonometri
Tutorial
Ujian Sekolah
video
Wirausaha
  

Radar Hot Berita

Radarhot com

5 Soal Kalkulus Integral Substitusi Trigonometri dengan Pembahasan dan Jawaban

 

5 Soal Kalkulus Integral Substitusi Trigonometri Lengkap dengan Pembahasan dan Jawaban

5 Soal Kalkulus Integral Substitusi Trigonometri Lengkap dengan Pembahasan dan Jawaban

Integral substitusi trigonometri adalah teknik yang digunakan untuk menyelesaikan integral yang melibatkan bentuk-bentuk tertentu yang lebih mudah ditangani dengan substitusi trigonometri. Berikut ini adalah lima contoh soal integral substitusi trigonometri lengkap dengan pembahasan dan jawabannya.

Soal 1: Integral dengan Substitusi x=asinθx = a \sin \theta 

Soal:
Hitunglah integral berikut:

a2x2dx\int \sqrt{a^2 - x^2} \, dx

Pembahasan:

  1. Substitusi Trigonometri:

    x=asinθdx=acosθdθx = a \sin \theta \quad \Rightarrow \quad dx = a \cos \theta \, d\theta a2x2=a2a2sin2θ=acosθ\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = a \cos \theta
  2. Substitusi ke dalam Integral:

    a2x2dx=acosθacosθdθ=a2cos2θdθ\int \sqrt{a^2 - x^2} \, dx = \int a \cos \theta \cdot a \cos \theta \, d\theta = a^2 \int \cos^2 \theta \, d\theta
  3. Gunakan Identitas Trigonometri:

    cos2θ=1+cos2θ2\cos^2 \theta = \frac{1 + \cos 2\theta}{2} a2cos2θdθ=a21+cos2θ2dθ=a22(1+cos2θ)dθ\int a^2 \cos^2 \theta \, d\theta = a^2 \int \frac{1 + \cos 2\theta}{2} \, d\theta = \frac{a^2}{2} \int (1 + \cos 2\theta) \, d\theta
    =a22(1dθ+cos2θdθ)= \frac{a^2}{2} \left( \int 1 \, d\theta + \int \cos 2\theta \, d\theta \right)
    =a22(θ+sin2θ2)+C= \frac{a^2}{2} \left( \theta + \frac{\sin 2\theta}{2} \right) + C
  4. Substitusi Balik:

    θ=arcsinxasin2θ=2sinθcosθ=2xacosθ=2xa1(xa)2=2xaa2x2\theta = \arcsin \frac{x}{a} \quad \Rightarrow \quad \sin 2\theta = 2 \sin \theta \cos \theta = 2 \frac{x}{a} \cos \theta = 2 \frac{x}{a} \sqrt{1 - \left( \frac{x}{a} \right)^2} = \frac{2x}{a} \sqrt{a^2 - x^2}
    a2x2dx=a22(arcsinxa+xaa2x2a)+C\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \left( \arcsin \frac{x}{a} + \frac{x}{a} \cdot \frac{\sqrt{a^2 - x^2}}{a} \right) + C
    =a22arcsinxa+x2a2x2+C= \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C

Jawaban:

a2x2dx=a22arcsinxa+x2a2x2+C\int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C

Soal 2: Integral dengan Substitusi x=atanθx = a \tan \theta

Soal:
Hitunglah integral berikut:

dxa2+x2\int \frac{dx}{a^2 + x^2}

Pembahasan:

  1. Substitusi Trigonometri:

    x=atanθdx=asec2θdθx = a \tan \theta \quad \Rightarrow \quad dx = a \sec^2 \theta \, d\theta
    a2+x2=a2+a2tan2θ=a2(1+tan2θ)=a2sec2θa^2 + x^2 = a^2 + a^2 \tan^2 \theta = a^2 (1 + \tan^2 \theta) = a^2 \sec^2 \theta
  2. Substitusi ke dalam Integral:

    dxa2+x2=asec2θdθa2sec2θ=asec2θdθa2sec2θ=dθa\int \frac{dx}{a^2 + x^2} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 \sec^2 \theta} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 \sec^2 \theta} = \int \frac{d\theta}{a}
  3. Integrasi:

    dθa=θa+C\int \frac{d\theta}{a} = \frac{\theta}{a} + C
  4. Substitusi Balik:

    θ=arctanxa\theta = \arctan \frac{x}{a} dxa2+x2=1aarctanxa+C\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C

Jawaban:

dxa2+x2=1aarctanxa+C\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C

Soal 3: Integral dengan Substitusi x=asecθx = a \sec \theta

Soal:
Hitunglah integral berikut:

dxxx2a2\int \frac{dx}{x \sqrt{x^2 - a^2}}

Pembahasan:

  1. Substitusi Trigonometri:

    x=asecθdx=asecθtanθdθx = a \sec \theta \quad \Rightarrow \quad dx = a \sec \theta \tan \theta \, d\theta x2a2=a2sec2θa2=asec2θ1=atanθ\sqrt{x^2 - a^2} = \sqrt{a^2 \sec^2 \theta - a^2} = a \sqrt{\sec^2 \theta - 1} = a \tan \theta
  2. Substitusi ke dalam Integral:

    dxxx2a2=asecθtanθdθasecθatanθ=dθa=1adθ\int \frac{dx}{x \sqrt{x^2 - a^2}} = \int \frac{a \sec \theta \tan \theta \, d\theta}{a \sec \theta \cdot a \tan \theta} = \int \frac{d\theta}{a} = \frac{1}{a} \int d\theta
  3. Integrasi:

    dθ=θ+C\int d\theta = \theta + C
  4. Substitusi Balik:

    θ=sec1xa\theta = \sec^{-1} \frac{x}{a} dxxx2a2=1asec1xa+C\int \frac{dx}{x \sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{x}{a} + C

Jawaban:

dxxx2a2=1asec1xa+C\int \frac{dx}{x \sqrt{x^2 - a^2}} = \frac{1}{a} \sec^{-1} \frac{x}{a} + C

Soal 4: Integral dengan Substitusi x=asinθx = a \sin \theta (untuk bentuk yang berbeda)

Soal:
Hitunglah integral berikut:

x2a2x2dx\int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx

Pembahasan:

  1. Substitusi Trigonometri:

    x=asinθdx=acosθdθx = a \sin \theta \quad \Rightarrow \quad dx = a \cos \theta \, d\theta
    a2x2=acosθ\sqrt{a^2 - x^2} = a \cos \theta
  2. Substitusi ke dalam Integral:

    x2a2x2dx=a2sin2θacosθacosθdθ=a3sin2θdθ\int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx = \int \frac{a^2 \sin^2 \theta}{a \cos \theta} \cdot a \cos \theta \, d\theta = a^3 \int \sin^2 \theta \, d\theta
  3. Gunakan Identitas Trigonometri:

    sin2θ=1cos2θ2\sin^2 \theta = \frac{1 - \cos 2\theta}{2} a3sin2θdθ=a31cos2θ2dθ=a32(1cos2θ)dθa^3 \int \sin^2 \theta \, d\theta = a^3 \int \frac{1 - \cos 2\theta}{2} \, d\theta = \frac{a^3}{2} \int (1 - \cos 2\theta) \, d\theta
    =a32(1dθcos2θdθ)= \frac{a^3}{2} \left( \int 1 \, d\theta - \int \cos 2\theta \, d\theta \right)
    =a32(θsin2θ2)+C= \frac{a^3}{2} \left( \theta - \frac{\sin 2\theta}{2} \right) + C
  4. Substitusi Balik:

    θ=arcsinxasin2θ=2xa1(xa)2=2xaa2x2\theta = \arcsin \frac{x}{a} \quad \Rightarrow \quad \sin 2\theta = 2 \frac{x}{a} \sqrt{1 - \left( \frac{x}{a} \right)^2} = \frac{2x}{a} \sqrt{a^2 - x^2}
    x2a2x2dx=a32(arcsinxaxa2x2a2)+C\int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx = \frac{a^3}{2} \left( \arcsin \frac{x}{a} - \frac{x \sqrt{a^2 - x^2}}{a^2} \right) + C
    =a32arcsinxaxa2x22+C= \frac{a^3}{2} \arcsin \frac{x}{a} - \frac{x \sqrt{a^2 - x^2}}{2} + C

Jawaban:

x2a2x2dx=a32arcsinxaxa2x22+C\int \frac{x^2}{\sqrt{a^2 - x^2}} \, dx = \frac{a^3}{2} \arcsin \frac{x}{a} - \frac{x \sqrt{a^2 - x^2}}{2} + C

Soal 5: Integral dengan Substitusi x=atanθx = a \tan \theta (untuk bentuk yang berbeda)

Soal:
Hitunglah integral berikut:

dxa2+x2\int \frac{dx}{\sqrt{a^2 + x^2}}

Pembahasan:

  1. Substitusi Trigonometri:

    x=atanθdx=asec2θdθx = a \tan \theta \quad \Rightarrow \quad dx = a \sec^2 \theta \, d\theta a2+x2=a2+a2tan2θ=a1+tan2θ=asecθ\sqrt{a^2 + x^2} = \sqrt{a^2 + a^2 \tan^2 \theta} = a \sqrt{1 + \tan^2 \theta} = a \sec \theta
  2. Substitusi ke dalam Integral:

    dxa2+x2=asec2θdθasecθ=secθdθ\int \frac{dx}{\sqrt{a^2 + x^2}} = \int \frac{a \sec^2 \theta \, d\theta}{a \sec \theta} = \int \sec \theta \, d\theta
  3. Integrasi:

    secθdθ=lnsecθ+tanθ+C\int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C
  4. Substitusi Balik:

    x=atanθsecθ=1+tan2θ=1+(xa)2=a2+x2ax = a \tan \theta \quad \Rightarrow \quad \sec \theta = \sqrt{1 + \tan^2 \theta} = \sqrt{1 + \left( \frac{x}{a} \right)^2} = \frac{\sqrt{a^2 + x^2}}{a} dxa2+x2=lna2+x2a+xa+C=lna2+x2+xa+C\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left| \frac{\sqrt{a^2 + x^2}}{a} + \frac{x}{a} \right| + C = \ln \left| \frac{\sqrt{a^2 + x^2} + x}{a} \right| + C

Jawaban:

dxa2+x2=lna2+x2+x+C\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln \left| \sqrt{a^2 + x^2} + x \right| + C

Kesimpulan

Melalui lima soal di atas, kita telah mempelajari cara menggunakan substitusi trigonometri untuk menyelesaikan berbagai bentuk integral. Teknik ini sangat berguna dalam kalkulus, terutama ketika menghadapi integral yang melibatkan bentuk-bentuk kompleks yang dapat disederhanakan melalui substitusi trigonometri. Dengan memahami langkah-langkah dan identitas trigonometri yang digunakan, kita dapat menyelesaikan integral dengan lebih efektif dan efisien.


Radar Hot News: Berita Sains, Edukasi, dan Informasi Terkini

Radar Hot News adalah sumber terpercaya Anda untuk berita terbaru dalam bidang sains, edukasi, dan informasi terkini. Kami berkomitmen untuk menyajikan artikel yang informatif dan mendidik, yang mencakup berbagai topik mulai dari penemuan ilmiah terbaru hingga perkembangan penting dalam dunia pendidikan.

Tidak ada komentar:

Posting Komentar

Start typing and press Enter to search