Latihan Soal Persamaan Kuadrat By Bimbel Jakarta Timur | Radarhot com
RadarHot News Berita Sains Edukasi Informasi Terkini | Matematika Fisika Kimia Biologi | SD SMP SMA Mahasiswa Guru | Soal Metode


Latihan Soal Persamaan Kuadrat By Bimbel Jakarta Timur






Setelah kita pelajari materi Persamaan Kuadrat, kita memerlukan soal-soal latihan untuk melatih pemahaman kita.




Berikut ini kami sajikan beberapa soal dengan pembahasannya untuk kamu pelajari.
Latihan Soal Persamaan Kuadrat By Bimbel Jakarta Timur



1. Perhatikan persamaan-persamaan berikut!
   (i) 2x2 – 5=0
   (ii) 2x2 + 3x3=0
   (iii) 3x + 6=0
   (iv) 3x2 + 5x + 9=0
Yang merupakan persamaan kuadrat adalah…
a. (i) dan (ii)                 
b. (i) dan (iii)                
c. (ii) dan (iv)
d. (i) dan (iv)


Pembahasan:
Persamaan kuadrat adalah persamaan yang sukunya memiliki pangkat tertinggi 2.

d. (i) dan (iv)

2. Persamaan 2x (x + 5)=3x – 4 jika diubah ke bentuk umum persamaan kuadrat adalah…
a. 2x2 – 7x + 4=0          
b. 2x2 + 7x + 4=0       
c. – x2 + 7x + 4=0
d. x2 – 7x + 4=0


Pembahasan:
2x (x + 5)=3x – 4 
2x2 + 10x=3x – 4
2x2 + 10x – 3x + 4=0

2x2 + 7x + 4=0

3.Faktor dari 3x2 – 6x=0 adalah…
a. 3x(x – 3)=0             
b. 3x(x – 2) =0             
c. 3(x2 – 2)
d. 3(x2 – 2x)


Pembahasan:
3x2 – 6x   = 0 kedua suku bisa dibagi 3x

3x (x – 2)=0

4. Salah satu faktor dari x– 7x + 12  adalah…
a. x – 2                         
b. x – 3                         
c. x + 3
d. x + 4


Pembahasan:
x2 – 7x + 12=0
a + b=-7 dan axb=12
a=-3 dan b=-4

(x – 3) (x – 4) 

5. Nilai diskriminan dari persamaankuadrat 2x2 – 3x – 5  = 0 adalah….
a. – 31       
b. 20        
c. 29          
d. 49


Pembahasan:
2x2 – 3x –5  =0
a = 2, b = -3, c = -5
D = b2 – 4.a.c
    = (-3)2 – 4(2)(-5)
    = 9 + 40
    = 49

6. Agar persamaan kuadrat 4x2– 12 x + p = 0 memiliki akar kembar, maka nilai p=…
a. – 9         
b. – 3          
c. 3          
d. 9


Pembahasan :
4x2 –12 x + p=0
a=4, b=-12, c=p

akar kembar maka D=0
b2– 4.a.c        =0
(-12)2– 4(4)p=0
144 –16p      =0
- 16 p             = - 144
p                     =- 144 : - 16

p                     = 9

7. Jika salah satu akar dari persamaan kuadrat x2 + 3 x + c=0 adalah 2, maka nilai c yang memenuhi adalah…
a. – 10         
b. – 5          
c. 5          
d. 10


Pembahasan:
substitusi nilai 2 ke persamaan x2 +3 x + c=0

22 + 3(2) + c=0
4   + 6     + c=0
10           + c=0

                   c=-10

8. Jika salah satu akar daripersamaan kuadrat x2 + bx – 24=0 adalah – 3, maka nilai akar yang lain adalah….
b. – 8          
b. – 5         
c. 8            
d. 10


Pembahasan:
substitusi nilai -3 ke persamaan x2 +bx – 24=0

-32 + b(-3) - 24=0
9  – 3b    – 24  =0
    - 3b               =24 – 9
   - 3b               =15
        b                =15 : -3
        b                =- 5

Persamaannya menjadi x2 –5x  – 24=0
(x + 3) (x – 8 )=0
             x – 8    =0

             x         =8

9. Bentuk kuadrat sempurna dari x2-6x + 8=0 adalah….
a. (x – 3)2=  - 17                 
b. (x – 3)2=- 8               
c. (x – 3)2  =1 
d. (x – 3)2  =8


Pembahasan:
x2 -6x + 8     =0
x2 -6x            =  -8
x2 -6x + (-3)2=  - 8 + (-3)2
(x – 3)2         =-8 + 9

(x – 3)2         =1


10. Akar – akar persamaan kuadrat x2– 11x + 30 =0 adalah….
a. real dan berbeda      
b. real dan sama           
c. tidak real
d. tidak dapat ditentukan 


Pembahasan:
x2 – 11x + 30=0
a=1, b=- 11 dan c=30

D= b2 – 4.a.c
  =(-11)2 –4(1)(30)
  =121 – 120
  =1


karena D > 0, maka akar-akarnyareal dan berbeda

11. Bentuk penyelesaian dengan rumusuntuk persamaan kuadrat 2x2 – 7x + 5=0 adalah….
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

       















Pembahasan : 
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990




















12. Akar-akar persamaan 3x2– 75=0 adalah….
a. 3 dan 25                      
b. 3 dan – 25                   
c. 3 dan -5
d. -5 dan 5

Pembahasan:
3x2 – 75     =0 kedua suku bisa dibagi 3
3 (x2 – 25)=0  a2 – b2=(a+b) (a – b)
3 (x+5) (x – 5)=0
x + 5=0 dan x – 5=0

x=- 5     dan x=5

13. Perhatikan persamaan-persamaan berikut
(i) x2 + 3x – 54=0
(ii) x2 – 8x + 16=0
(iii) 2x2 + 5x + 11=0
(iv) 3x2 – 7x + 4=0
Persamaan kuadrat yang mempunyai akar real adalah….
a. (i) dan (iii)                    
b. (i) dan (iv)                    
c. (i), (ii) dan (iii)
d. (i), (ii) dan (iv)


Pembahasan:
(i) x2 + 3x – 54=0
D=32 – 4(1)(-54)
  =9 – (- 216)
  =225
D > 0, akar real berbeda

(ii) x2 – 8x + 16=0
D=(-8)2 – 4(1)(16)
  =64 – 64
  =0
D=0. akar real kembar

(iii) 2x2 + 5x + 11=0
D=52 – 4(2)(11)
  =25 – 88
  =- 63
D < 0, akar tidak real

(iv) 3x2 – 7x + 4=0
D=(-7)2 – 4(3)(4)
  =49 – 48
  =1

D > 0, akar real berbeda

 d. (i), (ii) dan (iv)


14. Persamaan kuadrat x2– 9x + m=0 memiliki akar- akar α dan β. Jika α=2β, maka nilai m adalah….
a. – 18          
b. -6              
c. 6              
d. 18


Pembahasan:
x2 – 9x + m=0, α =2β
α + β  =-b/a=9
2β + β=9
3β       =9
β         =9 : 3
           =3
α =2β
  =2(3)
  =6

c/a   =αβ
m/1=(3)(6)

m     =18


15. Akar-akar persamaan kuadrat dari persamaan x2 + 2x – 35=0 adalah….
a. – 5 dan – 7                 
b. – 5 dan 7                    
c. 5 dan – 7
d. 5 dan 7

Pembahasan :
x2 + 2x – 35=0
(x+7) (x-5) =0
x+7=0 dan x-5=0
x=-7 dan x=5

16. Akar-akar persamaan kuadrat x2 – 4x + 1=0 adalah….
a. - √3 dan √3                
b. 1 - √3 dan 1 - √3       
c. 2 - √3 dan 2 + √3
d. 3 - √3 dan 3  - √3

Pembahasan :
x2 – 4x + 1     =0
x2 – 4x         =-1
x2 – 4x +(-2)²=-1 + (-2)²
(x - 2)²         =3
(x - 2)           =± √3
x -2=-√3 dan x - 2=√3
x=2 - √3 dan x=2 + √3

17. Jika akar-akar persamaan kuadrat 2x2+ 5x -3=0 adalah x1 dan x2, maka nilai x1 –x2 adalah….
a. 2,5         
b. 2,75         
c. 3,25          
d. 3,5

Pembahasan :
2x2 + 5x -3=0
a=2, b=5 dan c=-3


Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990


















18. Jumlah kuadrat akar-akar persamaan kuadratdari x2 + x – 3=0 adalah…
a. -7          
b. -1             
c. 1                
d. 7

Pembahasan : 
Misalkan akar-akar persamaan x2 + x – 3=0 adalah ∝ dan β, maka jumlah kuadrat akar-akarnya adalah ∝² + β²

Tentukan dulu nilai  + β dan β
 + β=-b/a
       =-1/1 
       =-1
β=c/a
   =-3/1
   =-3

∝² + β²=( + β)² - 2 β
           =(-1)² - 2(-3)
           =1 + 6
           =7

19. Akar-akar persamaan kuadrat x2 + 5x + (p+2)=0 adalah α dan β. Jika α=2β + 1, maka nilai p adalah….
a. 4           
b. 6              
c. – 2              
d. – 5

Pembahasan :
       α + β=-b/a
2β + 1 + β=-5/1
3β + 1     =-5
3β           =-5 - 1
3β           =-6
  β           =-6 : 3
  β           =-2

α=2β + 1
   =2(-2) + 1
   =-4 + 1
   =-3

αβ     =c/a
-3(-2)=(p+2)/1
6       =p+2
6 - 2   =p
4       =p

20. Himpunan penyelesaian dari persamaankuadrat 2x2 – x - 15=0 adalah….
a.{5/2, 3}     
b. (-5/2, 3}      
c. (-3/2, 5)    
d. (3/2, 5}

Pembahasan :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990



















21. Persamaan kuadrat yang akar-akarnya adalah 3 dan 1/3 adalah….
a. x2 – x + 3=0             
b. x2 + x + 3=0             
c. 3x2 – x + 3=0
d. 3x2 – 10x + 3=0

Pembahasan :
α=3 dan β=1/3
α+β=3 + 1/3
     =10/3
αβ   =3.1/3
     =1

Persamaan kuadrat
x2 – (α+β)x + αβ=0
x² - (10/3)x + 1=0 
semua suku dikali 3 agar jawaban tidak berbentuk pecahan
3x2 – 10x + 3=0

22. Persamaan kuadrat yang akar-akarnya 3 - √2 dan 3 + √2  adalah….
a. x2 – 3x + 2=0           
b. x2 + 6x + 7=0           
c. x2 – 6x + 7=0
d. x2 – 6x + 11=0

Pembahasan :
α= 3 - √2 dan β= 3 + √2
α + β= 3 - √2 + 3 + √2
       =6
αβ     =(3 - √2) (3 + √2)
       =9 - 2
       =7

Persamaan kuadrat
x2 – (α+β)x + αβ=0
x2 – 6x + 7 =0

23. Persamaan kuadrat 4x2 – (m+3)x+ m=0 memiliki akar real yang kembar. Nilai m yang memenuhi adalah…
a. -1 dan -9                 
b. -1 dan 9                  
c. 1 dan -9
d. 1 dan 9

Pembahasan : 
a=4, b=- (m+3) dan c=m
akar real kembar jika D=0
b² - 4.a.c=0
[-(m+3)]² - 4(4)(m)=0
m² + 6m + 9 - 16m=0
m² - 10m + 9=0
(m-1) (m-9)=0
m-1=0 dan m-9=0
m=1    dan m=9

24. Persamaan kuadrat baru yang akar-akarnya 2 lebihnya dari akar-akar persamaan x2 + 5x + 2=0 adalah…
a. x2 + x – 4=0                  
b. x2 – x + 4=0                  
c. x2 + 7x + 4=0
d. x2 + 7x + 8=0

Pembahasan :
Misal akar-akar persamaan x2 + 5x + 2=0 adalah α dan β
α+β=-b/a
     =-5
αβ   =c/a
     =2

akar-akar persamaan baru adalah (α+2) dan (β+2), maka
(α+2) + (β+2)= α+β +4
                   =-5 + 4
                   =-1

(α+2) (β+2)= αβ +2(α+β) + 4
                 =2 + 2(-5) + 4
                 =2 - 10 +4
                 =- 4

Persamaan baru 
x² - (-1)x + (-4)=0
x² + x - 4=0 


                
25. Sebuah segitiga siku-siku mempunyai panjang sisi (x – 7) cm, x cm dan (x + 1) cm. Panjang sisi terpendek segitigatersebut adalah…

a. 3 cm         
b. 5 cm         
c. 7 cm         
d. 9 cm

Pembahasan :
Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990















Dari gambar di atas bisa kita lihat bahwa sisi terpendek adalah (x-7) cm dan sisi terpanjang yang merupakan hipotenusa segitiga siku-siku adalah (x+1) cm.

Menurut dalil phytaghoras adalah
              x² + (x-7)² =(x+1)²   
       x² + x²-14x +49= x²+2x+1 
2x²-x²-14x-2x +49 -1=0
           x² - 16x + 48=0
          (x -12) (x - 4)=0
x - 12=0 dan   x - 4=0
x=12       dan  x=4

Sisi terpendek adalah x -7
jika x=12 maka x - 7=12-7=5

jika x=4 maka x - 7=4 - 7=-3 tidak memenuhi


Semoga Bermanfaat

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

https://www.radarhot.com/2019/08/latihan-soal-persamaan-kuadrat.html

Posting Komentar

  1. bagus nih soal soalnya sangat membantu... terima kasih

    BalasHapus
  2. SUPRA ~ SMP PGRI KRAMATWATU, sama-sama... semoga bermanfaat

    BalasHapus
  3. bagus. tapi mau copy atau download ndak bisa hhhh

    BalasHapus
    Balasan
    1. Terimakasih, maaf baru dibalas berhubung baru sekarang bisa memulai fasilitas reply comment, mungkin karena terhalang script iklan, bisa di coba dengan ctrl-p, kemudian save to pdf

      Hapus